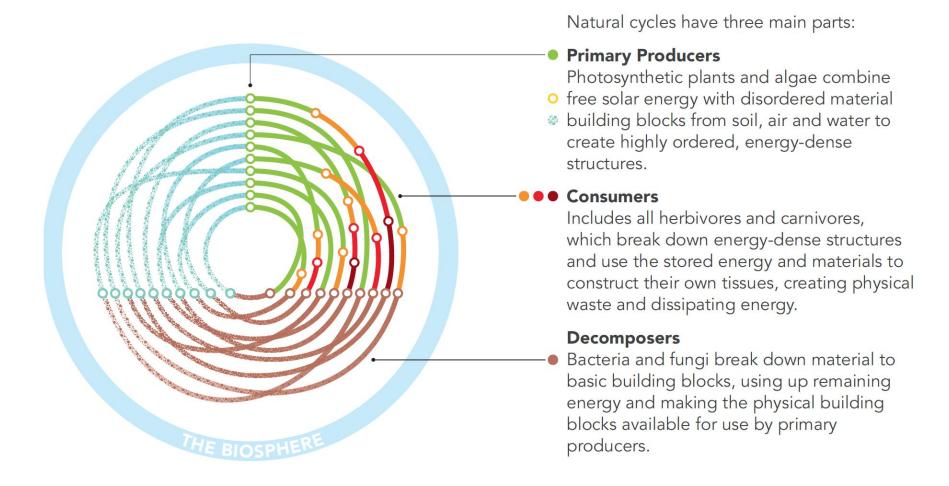


Catch and Release


- Natural materials cycle endlessly. Nature cannot distinguish between good molecules and bad, nor can their movement be stopped.
- The essence of the second law of thermodynamics is that disorder increases over time. This means nature disperses.
- A global net helps nature capture valuable (dispersed) building blocks.
- Primary producers, consumers, and decomposers make the system possible
- Matter and energy are inextricably linked.

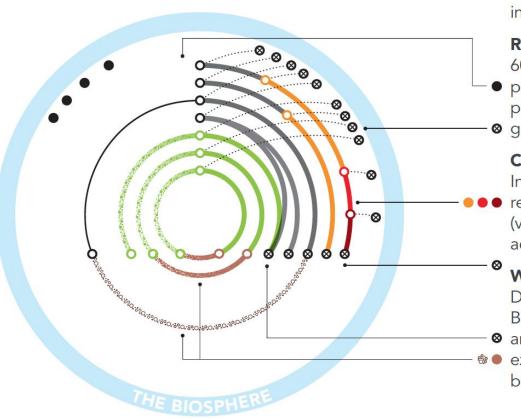
Catch and Release

- Natural materials cycle endlessly. Nature cannot distinguish between good molecules and bad, nor can their movement be stopped.
- The essence of the second law of thermodynamics is that disorder increases over time. This means nature disperses.
- A global net helps nature capture valuable (dispersed) building blocks.
- Primary producers, consumers, and decomposers make the system possible
- Matter and energy are inextricably linked.

The outermost loop is always the biosphere: air, water, and soil.

Nature's Dynamic Equilibrium

The Problem with Plastics


- Clothing made from recycled polyester terephthalate (rPET) still contains toxic chemicals not meant to go next to human skin.
- rPET is lower quality and degrades over time.
 - "Perpetual plastic" is a false narrative
- rPET is still plastic and shed microfibers pose a huge threat to marine ecosystems.
- Plastics/clothing collection at scale and mechanical sorting of textiles are both challenging

The Problem with Plastics

- Clothing made from recycled polyester terephthalate (rPET) still contains toxic chemicals not meant to go next to human skin.
- rPET is lower quality and degrades over time.
 - "Perpetual plastic" is a false narrative
- rPET is still plastic and shed microfibers pose a huge threat to marine ecosystems.
- Plastics/clothing collection at scale and mechanical sorting of textiles are both challenging

Nature doesn't sort; it disperses.

Current Fashion System

Fashion industry material flows lack equilibrium in several important ways:

Raw Materials

60% of textile fibers are synthetics derived from
petrochemicals. Processing is powered primarily by fossil fuels that release greenhouse
gas pollution.

Consumption

Includes the first use of clothing plus reuse, remanufacturing, and recycling. Synthetic fibers (virgin and recycled) become waste, which accumulates in soil, air, and water as pollution.

Waste and Recovery

Decomposers are mostly absent in this system.

Blended fibers prevent recovery. Composting

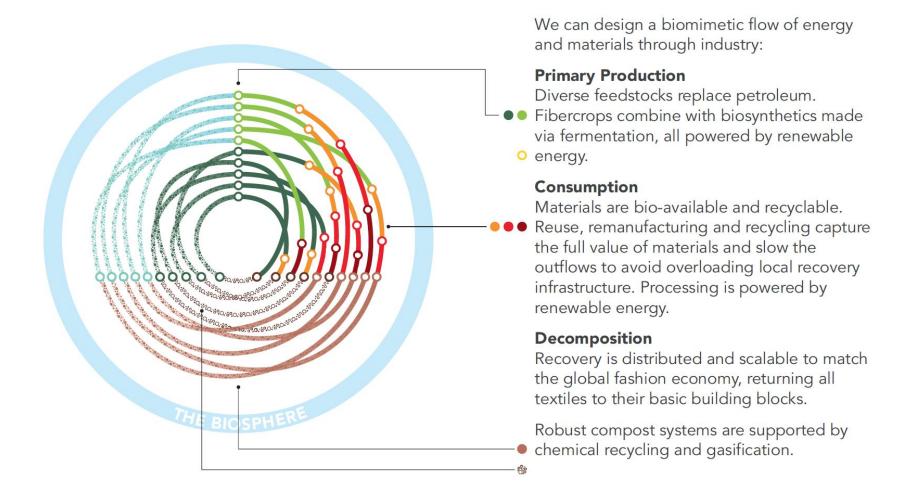
and thermal energy recovery are rare

exceptions that return materials to basic building blocks.

Moving to a Regenerative System

- Regenerative farm and fiber systems
- 2. Cellulosic feedstocks, including agricultural waste
- 3. Fermentation

Cleaning up


- 4. Chemical recycling
- 5. Gasification + fermentation

Biomimetic Fashion System

Levers for Change

1. Invest in local cycles

- Repair and upgrade equipment
- Catalog regional waste streams
- Create industrial symbioses
- Send the pattern, not the clothes
- Focus on the whole value chain

2. Build regenerative agricultural cycles

- Conservation pays
- Cluster fiber research and demand
- Fund new research
- Create new funding vehicles

3. Incentivize creation of new biomaterials

- Biomimetic biomaterials
- "ComPost Modern" design challenge
- Advance the knowledge commons

Let's Talk

Beth Rattner beth.rattner biomimicry.org

Megan Schuknecht
megan.schuknecht@biomimicry.org

